Tecnam Press Conference on P2002JF AerobilityConferenza stampa di presentazione del P2002JF Aerobility

Presentazione del pamphlet “Il mio volo silenzioso” del prof. Luigi Pascale al convegno dell’AIANPresentation of the pamphlet “My silent flight” prof. Luigi Pascale at AIAN conference

locandinaProfPascale

aian-librolocandinaProfPascale locandina Prof. Pascale


http://www.youtube.com/watch?v=TsZVVc3vf7U

 

Prof. Pascale 90th birthday

Professor Luigi Pascale Italy’s foremost aircraft designer celebrates his 90th birthday.

The Tecnam team gathered today in Capua, Italy to celebrate pilot, aircraft designer, entrepreneur and Tecnam’s leading light, Professor Luigi Pascale 90th birthday.

Despite this special anniversary Professor Pascale will still be behind his desk leading Tecnam’s Research and Design team, working on the very Tecnam latest aircraft design the next-generation 11 seat P2012 Traveller.

Luigi “Gino” Pascale is a native of Naples, Italy, whose passion for aviation began during the 1930’s when with his brother Giovanni “Nino” they won many model plane races. The two brothers built their first aircraft, the P48 Astore, which flew on the 2nd of April 1951.

At the time the Professor Luigi had just graduated with a Master Degree as a Mechanical Engineer (the Department of Aeronautical Engineering was created later by the Professor Pascale himself) and started his career at the University of Naples as assistant of Professor Umberto Nobile. Nobile was also an outstanding aviation character, undertaking the first expedition to North Pole with an airship.

Gaining his Pilots License is 1951; Professor Pascale designed and built a number of competition winning ‘race’ planes including the P55 Tornado.

Founding PARTENAVIA in 1957 began building General Aviation planes ‘for everyone’. Aircraft such as the P64 Oscar and P66 became bestsellers and firm favorites as training aircraft and led to his innovative P68 light twin design.

In 1986 the two Pascale brothers founded TECNAM, and Professor Pascale’s first design the P92 has now flown 200,000 hours with over 3,500 in service worldwide.

Professor Pascale has received numerous accolades and awards including the
‘Paul Tissandier diploma’ from Federation Aeronautique Internationale, the ‘Aeroplano d’Argento’ and earlier this year the ‘Flieger Magazin’ Award.

With his timeless passion for flying, today TECNAM is the world’s largest producer of both General Aviation and Light Sport Aircraft and delivers a new aircraft every working day.

For more information on the Tecnam extensive range of aircraft, please visit www.tecnam.com or contact your local dealer or Walter Da Costa, Tecnam Sales and Marketing, tel +34 616 481143, w.dacosta@tecnamspain.es
www.tecnam.com

press: Il Mattino

Professor Luigi Pascale Italy’s foremost aircraft designer celebrates his 90th birthday.

The Tecnam team gathered today in Capua, Italy to celebrate pilot, aircraft designer, entrepreneur and Tecnam’s leading light, Professor Luigi Pascale 90th birthday.

Despite this special anniversary Professor Pascale will still be behind his desk leading Tecnam’s Research and Design team, working on the very Tecnam latest aircraft design the next-generation 11 seat P2012 Traveller.

Luigi “Gino” Pascale is a native of Naples, Italy, whose passion for aviation began during the 1930’s when with his brother Giovanni “Nino” they won many model plane races. The two brothers built their first aircraft, the P48 Astore, which flew on the 2nd of April 1951.

At the time the Professor Luigi had just graduated with a Master Degree as a Mechanical Engineer (the Department of Aeronautical Engineering was created later by the Professor Pascale himself) and started his career at the University of Naples as assistant of Professor Umberto Nobile. Nobile was also an outstanding aviation character, undertaking the first expedition to North Pole with an airship.

Gaining his Pilots License is 1951; Professor Pascale designed and built a number of competition winning ‘race’ planes including the P55 Tornado.

Founding PARTENAVIA in 1957 began building General Aviation planes ‘for everyone’. Aircraft such as the P64 Oscar and P66 became bestsellers and firm favorites as training aircraft and led to his innovative P68 light twin design.

In 1986 the two Pascale brothers founded TECNAM, and Professor Pascale’s first design the P92 has now flown 200,000 hours with over 3,500 in service worldwide.

Professor Pascale has received numerous accolades and awards including the
‘Paul Tissandier diploma’ from Federation Aeronautique Internationale, the ‘Aeroplano d’Argento’ and earlier this year the ‘Flieger Magazin’ Award.

With his timeless passion for flying, today TECNAM is the world’s largest producer of both General Aviation and Light Sport Aircraft and delivers a new aircraft every working day.

For more information on the Tecnam extensive range of aircraft, please visit www.tecnam.com or contact your local dealer or Walter Da Costa, Tecnam Sales and Marketing, tel +34 616 481143, w.dacosta@tecnamspain.es
www.tecnam.com

press: il Mattino

Aero Club Napoli is 100. L’Aero Club di Napoli compie cento anni.

L'idrovolante di Viincenzo Bianchi

L’idrovolante di Viincenzo Bianchi

Dal volo dei fratelli Wright del 1903 erano trascorsi solo 7 anni quando un gruppo di “Benestanti, Aristocratici, Militari e Scienziati” si riunirono per iniziare a Napoli una nuova disciplina: l’aviazione. Napoli, grande capitale del regno, fu immediatamente affascinata dal volo. Numerosi erano gli eventi con ascensione di palloni aerostatici, prove di volo che attiravano la cittadinanza sull’allora Campo di Marte, la grande pianura usata per le esercitazioni militari e come galoppatoio.

La stampa seguiva con grande interesse: Matilde Serao appoggiò la sottoscrizione “Date ali all’Italia” del 1912. Il 29 giugno 2013, cento anni dopo, l’Aero Club di Napoli ha festeggiato l’anniversario con  un rinfresco “aeronautico” nell’hangar dell’Aeroclub sulla pista di Capodichino. Il presidente Oliviero, professore di Meccanica del Volo, ha brindato al glorioso passato e a un radioso futuro, tutto da costruire visto che l’aviazione leggera soffre da diversi anni di una crisi. I problemi principali – secondo Oliviero – riguardano il costo del carburante, caricato di troppe tasse e che rendono molto oneroso avvicinarsi alla pratica del volo. L’Aero Club di Napoli poi ha la particolarità di essere ubicato sulla pista di Capodichino, che come aeroporto interanzionale  è molto trafficato.  Se da un lato questo può essere un problema per un volo “libero” dall’altro, per chi vuole imparare a volare al fine di diventare pilota di linea, è l’opportunità per essere subito immerso in un contesto “reale” dove destreggiarsi seguendo le regole di autorizzazione dei vari enti di controllo del traffico.

La foto dei fratelli Wright in volo su Agnano.

In volo con Matacena
di Laura Leonelli

Le aveva chiesto tutto e lei aveva accettato. Gennaro Matacena e la fotografia, una storia di passione che all’inizio del ‘900 accompagna la vita di un uomo eccentrico e geniale, cultore di alta cucina, amante dello sport e insofferente ai limiti. Una storia da Napoli a Nizza, che la mostra «Gennaro Matacena. 1900-1930, tra tradizione e avanguardia», a cura di Walter Guadagnini e Bruno Matacena, aperta fino al 4 novembre nel Castello di Postignano, in Umbria, ripropone in tutta la sua freschezza. Due date per orientarsi in un archivio di 1.300 lastre: il 1899, anno in cui Gennaro, figlio di una ricca famiglia partenopea sposa Filomena Salsi, stesso patrimonio, ma di origini romagnole, e il 1901, quando Matacena, già diplomato in chimica in Svizzera, già tre lingue parlate con scioltezza, francese, tedesco, inglese, compra la sua prima macchina fotografica. Con perizia tecnica e adesione alla modernità, Matacena inizia a esplorare in stereoscopia i suoi due mondi, quello chiuso degli affetti familiari – sei figli – e quello aperto delle conquiste del nuovo secolo. E se la famiglia costringe, i fratelli Wright, fotografati in volo ad Agnano nel 1909, portano verso orizzonti più ampi. E così la mongolfiera che parte da piazza del Municipio a Napoli, il dirigibile, e sempre a Napoli le acrobazie aeree di Adolphe Pégoud, l’uomo che ha inventato il looping, il giro della morte, e che per primo si è lanciato con un paracadute. Accanto, come a voler ritrovare le origini di questa frenesia futurista, sfilano correndo gli allievi della Nunziatella e al galoppo il battaglione degli ufficiali. Ma quando nel 1928, lungo via Caracciolo marciarono i gerarchi fascisti, qualcosa nell’equilibrio “stereoscopico” di Matacena si rompe. È il confino. È il tramonto di un magnifico dilettante.

da: http://www.arteconomy24.ilsole24ore.com/art/approfondimenti/2012-09-12/volo-matacena-073837.php

L'idrovolante di Viincenzo Bianchi

L’idrovolante di Viincenzo Bianchi

Dal volo dei fratelli Wright del 1903 erano trascorsi solo 7 anni quando un gruppo di “Benestanti, Aristocratici, Militari e Scienziati” si riunirono per iniziare a Napoli una nuova disciplina: l’aviazione. Napoli, grande capitale del regno, fu immediatamente affascinata dal volo. Numerosi erano gli eventi con ascensione di palloni aerostatici, prove di volo che attiravano la cittadinanza sull’allora Campo di Marte, la grande pianura usata per le esercitazioni militari e come galoppatoio.

La stampa seguiva con grande interesse: Matilde Serao appoggiò la sottoscrizione “Date ali all’Italia” del 1912. Il 29 giugno 2013, cento anni dopo, l’Aero Club di Napoli ha festeggiato l’anniversario con  un rinfresco “aeronautico” nell’hangar dell’Aeroclub sulla pista di Capodichino. Il presidente Oliviero, professore di Meccanica del Volo, ha brindato al glorioso passato e a un radioso futuro, tutto da costruire visto che l’aviazione leggera soffre da diversi anni di una crisi. I problemi principali – secondo Oliviero – riguardano il costo del carburante, caricato di troppe tasse e che rendono molto oneroso avvicinarsi alla pratica del volo. L’Aero Club di Napoli poi ha la particolarità di essere ubicato sulla pista di Capodichino, che come aeroporto interanzionale  è molto trafficato.  Se da un lato questo può essere un problema per un volo “libero” dall’altro, per chi vuole imparare a volare al fine di diventare pilota di linea, è l’opportunità per essere subito immerso in un contesto “reale” dove destreggiarsi seguendo le regole di autorizzazione dei vari enti di controllo del traffico.

La foto dei fratelli Wright in volo su Agnano.

In volo con Matacena
di Laura Leonelli

Le aveva chiesto tutto e lei aveva accettato. Gennaro Matacena e la fotografia, una storia di passione che all’inizio del ‘900 accompagna la vita di un uomo eccentrico e geniale, cultore di alta cucina, amante dello sport e insofferente ai limiti. Una storia da Napoli a Nizza, che la mostra «Gennaro Matacena. 1900-1930, tra tradizione e avanguardia», a cura di Walter Guadagnini e Bruno Matacena, aperta fino al 4 novembre nel Castello di Postignano, in Umbria, ripropone in tutta la sua freschezza. Due date per orientarsi in un archivio di 1.300 lastre: il 1899, anno in cui Gennaro, figlio di una ricca famiglia partenopea sposa Filomena Salsi, stesso patrimonio, ma di origini romagnole, e il 1901, quando Matacena, già diplomato in chimica in Svizzera, già tre lingue parlate con scioltezza, francese, tedesco, inglese, compra la sua prima macchina fotografica. Con perizia tecnica e adesione alla modernità, Matacena inizia a esplorare in stereoscopia i suoi due mondi, quello chiuso degli affetti familiari – sei figli – e quello aperto delle conquiste del nuovo secolo. E se la famiglia costringe, i fratelli Wright, fotografati in volo ad Agnano nel 1909, portano verso orizzonti più ampi. E così la mongolfiera che parte da piazza del Municipio a Napoli, il dirigibile, e sempre a Napoli le acrobazie aeree di Adolphe Pégoud, l’uomo che ha inventato il looping, il giro della morte, e che per primo si è lanciato con un paracadute. Accanto, come a voler ritrovare le origini di questa frenesia futurista, sfilano correndo gli allievi della Nunziatella e al galoppo il battaglione degli ufficiali. Ma quando nel 1928, lungo via Caracciolo marciarono i gerarchi fascisti, qualcosa nell’equilibrio “stereoscopico” di Matacena si rompe. È il confino. È il tramonto di un magnifico dilettante.

da: http://www.arteconomy24.ilsole24ore.com/art/approfondimenti/2012-09-12/volo-matacena-073837.php

problema FTP con WordPress in XAMPP su Mac OS

Da quando ho ripristinato il mac come postazione di lavoro e non più di sole cazzate, ho dovuto ripristinare anche tutti quegli accorgimenti tecnici che fatti una volta, non ci pensi più. Ovviamente son tornato alle origini e ho installato XAMPP seguendo poi le istruzioni per modificare il chmod (che mi ricordavo di dover settare). Quello che non mi ricordavo era il problema con l’FTP e WordPress, che compare in Mac OS & XAMPP. Più facile di quel che si creda la soluzione. Soluzione FACILE FACILE Aprire il Terminale (in alto a dx nell’icona della lente digitate terminale e apritelo se non è già aperto) Scrivete esattamente questo codice: sudo /Applications/TextEdit.app/Contents/MacOS/TextEdit /Applications/XAMPP/etc/httpd.conf (se dopo vi chiede la password di sistema, inseritela) Cambiate queste due linee: User nobody e Group admin (se non son così è simile ci son solo loro come istruzioni) in User il-tuo-nome-nel-mac e Group staff. ATTENZIONE! : il-tuo-nome-nel-mac lo trovi aprendo il finder e leggendo il nome della tua cartella principale (solitamente è solo il nome proprio) ATTENZIONE! Se vi da problemi e vi dice che non potete modificare è perchè dovete permettere (tramite il chmod) alla cartella e/o al file httpd.conf di essere modificata: sudo chmod – R 777 /Applications/XAMPP/etc/httpd.conf Finito il tutto CHIUDETE e RIAVVIATE XAMPP .

Vintage Aviation AdsPubblicità aeree vintage

swissair memorabiliaswissair memorabilia

human factors on flight deckil fattore umano in cabina di pilotaggio

http://ti.arc.nasa.gov/m/profile/adegani/Flight-Deck_Checklists.pdf

slipping sidewaysatterraggio laterale

http://www.pilotfriend.com/training/flight_training/fxd_wing/slip.htm/a>

the slip
Types of slip vary in degree from inadvertently flying cross-controlled in the cruise i.e. one wing slightly low and compensating with opposite rudder, to a fully-fledged cross-controlled turn where the aircraft is steeply banked in a descending turn with full opposite rudder applied. All slips result in increased drag. This is a manoeuvre only for the pilot who has a very good feel for his/her aircraft because, among other things, the ASI will probably be giving a false airspeed readout. There seem to be as many definitions of the types of slip as there are exponents of slip techniques but the safe execution of all sideslips requires adequate instruction and continuing practice.

The straight sideslip approach to landing

The ‘helmet and goggles’ crowd who, very sensibly, like to fly biplanes and other aeroplanes not equipped with flaps, need a manoeuvre for use on the landing approach to a short strip which enables them to lose height quickly without increasing airspeed and which provides a good view of the landing area. The answer is the cross-controlled straight sideslip which is a manoeuvre designed to lose height over a short distance, dumping the potential energy of height by converting it to drag turbulence rather than kinetic energy. Such sideslips may also be a requirement when executing a forced landing.

Once established on the approach descent path at the correct airspeed, the aircraft is banked with sufficient opposite (top) rudder applied to stop the directional stability yawing the nose into the relative airflow and thus turning. Slight backward pressure on the control column is probably needed to keep the nose from dropping. The aircraft sideslips in a moderate to steep bank with the fuselage angled across the flight path, giving the pilot a very good view of the landing area. The greatly increased drag from the exposure of the fuselage side surfaces to the oncoming airflow enables an increased angle of descent without an increase in the approach airspeed.

The sink rate is controlled by aileron and power is held constant – usually at idle/low power and the sideslip must be halted well before the round-out and touchdown. When recovering care must be taken to coordinate the relaxation of the back pressure, the levelling of the wings and the straightening of the rudder otherwise the aircraft may stall – particularly in turbulent conditions.

The straight sideslip is limited by the maximum rudder authority available, there will be a bank angle beyond which full opposite rudder will not stop the aircraft from turning.

The sideslipping turn

This is a very useful manoeuvre if it is necessary to increase the sink rate during a turn – such as the turn onto final approach in a forced landing when an overshoot of the landing site is apparent. It is just a sideslip where the bank applied exceeds the opposite rudder applied and the aircraft enters a sideslipping turn. The rate of turn and the rate of sink are controlled by the amount of bank and the amount of rudder, very high descent rates are achieved if the bank angle applied exceeds the full rudder authority.

Fishtailing

Fish tailing is a series of sideslips where the wings are held level in the approach attitude while the aircraft is repeatedly yawed from side to side by applying full alternate rudder. The increased drag increases the sink rate.

Sideslip to a crosswind landing

In a sideslip to a crosswind landing the aircraft is always banked with the into-wind wing down so that the sideslip can be smoothly decreased to a forward slip [see below] before the roundout. Most aircraft tend to be slower in the slip so the nose will need to be a bit lower than that needed to maintain the normal approach speed. A smoothly executed sideslip approach requires much practise but displays considerable finesse to a ground observer.

Wild blue coffin corner

MODERN airliners are are not supposed to fall out of the sky. Especially if they are highly automated, fly-by-wire passenger jets such as the Airbus 330. Like the unsinkable Titanic, the Airbus 330 was considered an unstallable aeroplane. It was equipped with digital systems that unerringly corrected for pilot error as well as any buffeting caused by bad weather. Until one fatal night two years ago, the Airbus 330 had had an exemplary safety record. What caused the Airbus 330 used on Air France flight 447 from Rio de Janeiro to Paris to plunge into the Atlantic, killing all 228 people on board, remains one of the biggest mysteries in aviation history.

Accident investigators have their suspicions. Several plausible scenarios have been constructed from the few pieces of mangled wreckage fished from the ocean; the batch of error messages the plane radioed autonomously back to the airline’s offices in its final moments; the satellite pictures showing the complexity of the “mesoscale convective system” straddling the plane’s flight path; and the known design flaws in the plane’s “pitot tubes” used to measure airspeed. But without the flight-data and cockpit-voice recorders, no-one can say for certain what really brought AF447 down. The two “black boxes”, bolted to a rear section of the Airbus 330’s fuselage, remain hidden up to 3,000 metres (10,000ft) down in the rugged underwater terrain between South America and West Africa.

The French authorities have tried three times to find AF447’s black boxes. This week, they embarked on a fourth attempt. Though planned last November, the current search has taken on new urgency. The judge overseeing the accident has filed preliminary charges of manslaughter against both Airbus and Air France. Without the black boxes, it will remain unclear whether what happened was precipitated by pilot error or equipment failure (or both)—and therefore how to apportion the blame. The damages awarded to the victims’ families could run into hundreds of millions of dollars if “willful misconduct” can be proved. Normally, the Warsaw and Montreal Conventions limit the liability in airline accidents to $150,000 per passenger. But if the black boxes are recovered, and the recordings prove beyond doubt that an incorrect speed reading had triggered the accident, the manufacturer, the airline or both could be held responsible for the 228 deaths. Airbus had known about the pitot problem for several years. Meanwhile, Air France had deferred replacing the faulty probes on the plane in question.

At flight level 350 (ie, 35,000ft or 10,600 metres) where AF447 was cruising, the pilot needs to know precisely what the airspeed is because the margin for error is so small. As air density decreases with increasing altitude, a plane has to fly faster the higher it climbs. In other words, the stall speed increases with altitude, and determines the minimum speed the plane can fly at any given altitude and weight. Travel more slowly and the air flowing over the upper surface of the wings becomes detached, causing the plane to lose lift and plunge into a precipitous dive (ie, to stall).

Flying too close to the stall speed is only half the problem. There is also an upper speed limit set by the speed of sound. Like the bow wave of a ship, a plane moving through the air sends out a pressure wave ahead of it. This pushes the air aside so it can flow smoothly over the wings, fuelage and control surfaces. But when the plane approaches the speed of sound (ie, Mach 1), it catches up with its own pressure wave—which then becomes a standing wave comprising a sharp jump in pressure known as a shockwave.

When that happens, the air ahead of the aircraft has no warning that a rapidly moving body is approaching, and slams into the shockwaves formed along the leading edges of the wings. As the shockwaves refract the airflow abruptly upwards, the centre of pressure (the point along the wings where the lift acts) lurches backwards, causing the aircraft (if not designed for supersonic flight) to pitch violently down, and possibly break up in an uncontrollable nose-dive.

As the speed of sound depends on the temperature of the air, which decreases with altitude up to the tropopause at around 17,000 metres, the maximum speed an aircraft can fly at safely (before running into speed-of-sound effects) likewise decreases with altitude. Thus, on a chart of altitude (vertical) versus speed (horizontal), there is a point where the positively sloping plot of the plane’s stall speed crosses the negatively sloping line of its maximum safe speed below the speed of sound (Mach 0.86, in the case of an Airbus 330). The apex where the two lines intersect—where the minimum and maximum safe speeds are the same—is known euphemistically as “coffin corner”. At 10,600 metres, a fully loaded Airbus 330 cruises (for reasons of fuel economy) just below this critical point in its flight envelope—with probably no more than 25 knots (46 kph) between stalling (through flying too slow) and breaking up in a shockwave-induced dive (through flying too fast).

The flight path taken by AF447 followed a great circle north-east from Rio de Janeiro through the Intertropical Convergence Zone near the equator. This is where masses of northern and southern air collide to produce a region of low pressure marked by tumultuous thunderstorms rising to 15,000 metres or more. There is nothing out of the ordinary about such tropical weather patterns. Air traffic traverses them dozens of times a day.

In the case of AF447, the plane’s weather radar—which can detect water and ice in clouds up to 80km (50 miles) away—would have warned of thunderclouds ahead, allowing the flight crew to thread their way between them at their own discretion. But what the radar could not have warned them of was a much bigger multi-centred storm system masked by a smaller one in front of it.

One suggestion, supported by satellite weather pictures, is that the crew of AF447 may have avoided a typical thunderstorm, or even flown through it, only to run smack into a monster “mesoscale convective system”—a towering complex of multiple cumulonimbus storm cells containing severe updrafts, along with ice particles and pellets of snow. If the pitot tubes momentarily froze over (as they had been known to do) and started issuing conflicting airspeed data, the flight-control system would have automatically disengaged the autopilot and forced the crew to fly manually.

With the plane buffeted violently by the turbulent updrafts, the first thing the pilot would have done would have been to reduce speed to ride out the storm. But with no clear idea of what the actual airspeed was—and with no automatic systems to prevent manual inputs from making the aircraft fly too slowly or too fast when operating so close to its coffin corner—the pilot could have unwittingly pitched the plane into an uncontrollable stall.

What is known is that, in the stricken plane’s final moments, the automatic fault-reporting system beamed 24 text messages—its last will and testament—via satellite to the airline’s maintenance centre in Paris. The first announced that the autopilot had been disconnected. The second warned that the flight-control system was unable to determine the correct airspeed. The final message—as the plane’s digital systems shut down one by one—reported that the cabin had depressurised or was descending with a high vertical velocity.

From the few pieces of wreckage recovered, the pattern of deformation suggests that AF447 slammed into the ocean straight and level and in one piece, only to be shattered into thousands of fragments on impact. By all accounts, it had literally fallen out of the sky as if its wings had melted.

from the Economist

Previous Posts Next Posts